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On the space of Minkowski summands of a convex polytope
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Abstract

We present an algorithm for computing all Minkowski
Decompositions (MinkDecomp) of a given convex, in-
tegral d-dimensional polytope, using the cone of com-
binatorially equivalent polytopes. An implementation
is given in sage.

1 Introduction

Let A ∈ Zm×d be a matrix whose row vectors ai ∈ Zd
positively span Rd. For b ∈ Rm the set

Pb = {x ∈ Rd : Ax ≤ b}

is a polytope. The set of all non-empty polytopes Pb
arising this way can be parameterized by their right-
hand side vectors b. Let us denote the set of such
right hand side vectors b by

U (A) = {b ∈ Rm : Pb 6= ∅} . (1)

Problem 1 Minkowski Summands. Given A ∈
Zm×d and b ∈ Rm, such that Ax ≤ b is the H-
representation of a convex integral polytope Pb, com-
pute all integral MinkDecomp of Pb.

In the classical problem of MinkDecomp, which
is NP-complete, we are seeking a pair of polytopes
whose Minkowski sum equals the input polytope. In
this work, we compute instead all possible Minkowski
summands. In the first step, we compute the cone of
combinatorially equivalent polytopes U(A)b, a sub-
cone of U(A) whose rays and lines generate all the
Minkowski summands of Pb. Then, we appropriately
shift these rays so that they correspond to integer
Minkowski summands. We give an algorithm and its
implementation in sage [9] performing the computa-
tion of all Minkowski summands in any dimension d,
extending ideas from [5].
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We focus on the integral decomposition of poly-
topes. The integral decomposition of polytopes has
applications in various areas of mathematics such as
integer and mixed integer programming [5], polyno-
mial factorization [4] or implicitization [3]. Since it
may happen that an integral polytope has a rational
but not an integral decomposition, such a distinction
does make sense. Although, qualitatively, a dilation
resolves this problem, in many applications, e.g., fac-
torization of polynomials, such a step is not allowed.

Previous work on MinkDecomp algorithms mainly
focuses in low dimension [2, 3, 4]. The problem of
computing a Minkowski summand in general dimen-
sion is reduced to the feasibility of a linear program
[6], thus deciding if a polytope is decomposable in
order to test polynomial irreducibility. In [1, 5] is
explored the cone of combinatorially equivalent poly-
topes and its computational aspects. Some classical
work on polytope decomposition is presented in [7].

2 Computing the Space of Minkowski Summands

A system of inequalities Ax ≤ b is feasible if it has
a solution. Feasibility is characterized by Farkas’
lemma.

Lemma 1 (Farkas 1894) The system of inequali-
ties Ax ≤ b is feasible if and only if y>b ≥ 0 for
each y ≥ 0 with A>y = 0.

The dual, U∗(A) = {y ∈ Rm : y>b ≥ 0 ∀b ∈ U(A)},
in view of Lemma 1 becomes

U∗(A) = {y ∈ Rm : A>y = 0 and y ≥ 0}. (2)

It is immediate from Equation (2) that U∗(A) is the
intersection of ker(A>) with the positive orthant Rm+
of Rm. Therefore, U∗(A) is a cone and its primal set
U(A) is a cone as well and both contain the origin.

Throughout we will use the following example.

Example Consider the matrix A ∈ Z10×3 and the
vector b ∈ Z10

0 1 1
1 0 1
1 0 0
0 1 0
0 0 −1
0 0 1
0 −1 0
0 −1 1
−1 0 0
−1 0 1



 x
y
z

 ≤



4
4
3
3
0
2
0
1
0
1


(3)
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defining the polytope in Figure 1.
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Figure 1: The polytope defined by System (3) and its
2 Minkowski summands.

The inequalities defining the cone U(A) are:
b5 + b6 ≥ 0 b4 + b5 + b8 ≥ 0 b2 + 2b5 + b10 ≥ 0
b4 + b7 ≥ 0 b4 + b5 + b10 ≥ 0 b2 + b5 + b9 ≥ 0
b4 + b5 + b8 ≥ 0 b1 + b5 + b7 ≥ 0 b1 + 2b5 + b8 ≥ 0

Switching from the H-representation to its V -
representation, the cone U (A) is generated by 9 rays
and 3 lines in Z10.

The normal cone of a face F of a polytope P in Rd
is the set

N (F ;P ) = {v ∈ Rd : v>x = h(P, v) for all x ∈ F}.

The dimension of the normal cone of a k-dimensional
face is (d − k). The normal fan N (P ) of P, which is
the collection of the normal cones of all faces of P , is
a complete fan in Rd.

The support function of a polytope P in Rd,
h(P, ; ), is defined over all u ∈ Rd as h(P, u) =
max{u>x : x ∈ P}. In geometric terms, the evalu-
ation of the support function at u ∈ Rd implies that
the hyperplane Hu : x>u = h(P, u) contains P in one
of its closed halfspaces and Hu∩P 6= ∅. We call every
such Hu an active or supporting hyperplane of P .

Definition 1 Two polytopes P,Q in Rd are strongly
combinatorially equivalent if, for all v ∈ Rd

dim{y ∈ P : v>y = h(P, v)} =

= dim{y ∈ Q : v>y = h(Q, v)}.

If polytopes P,Q have the same defining hyper-
planes, as in our setup, their normal fans are related
by inclusion, i.e., one fan is a subfan of the other. If,
in addition, P,Q are strongly combinatorially equiv-
alent, Definition 1 implies N (P ) = N (Q). We can
therefore say that two polytopes are strongly combi-
natorially equivalent if and only if they have the same
normal fan.

Let us give some definitions related to MinkDe-
comp. Polytopes P1, P2 in Rd are homothetic if
P1 = ρP2 + v for some v ∈ Rd and ρ > 0.

Definition 2 A polytope P in Rd is called (homo-
thetically) decomposable if two polytopes P1 and P2

exist with P = P1 + P2, where Pi in not homothetic
to P for i ∈ {1, 2}. Otherwise P is (homothetically)
indecomposable.

A polytope P1 is a summand of a polytope P
(denoted as P1 ≺ P ) if there exists a scalar ρ > 0 and
a polytope P2 such that P = ρP1 + P2.

In view of the definition above, trivial polytopes,
i.e., points, are indecomposable.

For b ∈ U(A), we define the support vector ηb of
the polytope Pb as

ηb = (h(Pb, a1), h(Pb, a2), . . . , h(Pb, ad)) .

We note that ηb ∈ Zm is the componentwise-least
right hand side for which Pb = Pηb . Let us now define
the set

U (A)b := {ηv : v ∈ U (A) such that Pv ≺ Pb}. (4)

In [5, 7, 8], the authors show that U (A)b is a ra-
tional polyhedral subcone of U (A) whose structure
and extreme rays convey important information on
decomposability.

Theorem 2 [7],[8] The set U(A)b := {ηv : v ∈
U(A) such that Pv ≺ Pb} is a rational polyhedral
subcone of U(A) whose extreme rays correspond to
indecomposable polytopes and its interior consists of
all b′ for which Pb′ is strongly combinatorially equiv-
alent to Pb.

Since U(A)b is a subcone of the homogeneous (i.e.,
defined by linear halfspaces) cone U(A), we wish to
express U(A)b as a set of linear inequalities of type
a>v ≥ 0 where a, v ∈ Rm. These inequalities should
be imposed from the feasibility of Ax ≤ v but, more
importantly, they should incorporate the fact that
strong combinatorial equivalence is preserved over all
faces as well.

Since each face F of Pb can be viewed as a polytope,
we can express it as a set {x ∈ Rd : AF x ≤ bF} where
AF ∈ Zλ×d, bF ∈ Zλ and λ ∈ N. In this context,
we can define U(AF ) and find its subcone U(A)bF
containing all those y ∈ Zλ for which the polytope
{x ∈ Rd : AF x ≤ y} is combinatorially equivalent to
F . However, without reference to the original poly-
tope Pb, the computation of U(AF )bF does not keep
track of the restrictions imposed on the elements of
U(A)b. This indicates that F should be expressed us-
ing equalities and inequalities from the original sys-
tem Ax ≤ b.

Example (Cont’d) We will apply the procedure de-
scribed above on a face of our example. Let us pick
the facet F defined by [1, 0, 1]>[x, y, z] = b1. Then
the system AFx ≤ b for the facet F is
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

0 1 1
1 0 1
1 0 0
0 1 0
0 0 −1
0 0 1
0 −1 0
0 −1 1
−1 0 0
−1 0 1
−1 0 −1



 x
y
z

 ≤



b0
b1
b2
b3
b4
b5
b6
b7
b8
b9
−b1


(5)

For the polyhedron defined by System (5), we obtain
the following H-representation of U (AF ): 0 0 1 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 0 0 1
0 1 0 0 1 0 0 0 1 0 0

 b̃ ≥

 0
0
0

 ,
and by mapping the b̃i’s back to the corresponding bi’s
of the input system (note that b̃ = (b0, . . . , b9,−b1))
we obtain the following two constraints: b2 + b8 ≥ 0
and b1 + b4 + b8 ≥ 0.

The idea in Algorithm 1 is to repeat the above pro-
cedure for every face of the input polytope so that
none of them “loses support”. Note that visiting each
face of Pb is essential. If, for example, in the polytope
of Figure 1 the algorithm does not visit the top facet,
then some b′ in the interior of U (A)b corresponds to
the square pyramid. This happens because no restric-
tion prevents the four top vertices to behave as one.
This, however, is not acceptable since the square pyra-
mid is not strongly combinatorially equivalent to Pb.
Also, starting with U (A) is necessary, since it deter-
mines the orientation of the outer normals of Pb. If in
our example we started the algorithm with U (A) = ∅,
then we would get the reverse square pyramid as a
summand of the polytope, which is not true.

Using the knowledge of the structure of the cone
of combinatorially equivalent polytopes, we can com-
pute all indecomposable Minkowski summands of a
given polytope. It is however essential, once we have
computed the rays of U (A)b, to read out those which
produce non-trivial indecomposable polytopes. This
is the content of Proposition 3.

We say that Ax ≤ b, A ∈ Zm×d is an irredundant
description of Pb = {x : Ax ≤ b}, if the removal of
any of the inequalities of the linear system, results in
a different polytope (or polyhedron). Notice that this
is stronger than requiring b to be the support vec-
tor ηb of Pb. The irredundant description of a full
dimensional polytope Pb is unique and each of its in-
equalities supports Pb along a facet. Thus, if Ax ≤ b
is an irredundant description of a d-polytope with m
facets then A ∈ Zm×d.

Below we show that, if the input is an irredundant
description of Pb, then it is only the rays of U(A)b
that account for the (in)decomposability of Pb.

Proposition 3 Assume Pb = {x : Ax ≤ b}, A ∈
Rm×d is a d-polytope with m facets. Then, the gener-
ating rays b1, . . . , bk of U (A)b correspond to nontrivial

indecomposable polytopes, while the generating lines
±c1, . . . ,±cd of U (A)b correspond to points.

Combining Proposition 3 and Theorem 2, we de-
duce that each MinkDecomp of Pb into non-trivial
indecomposable polytopes is a sum:

Pb = λ1Pb1 + · · ·+ λkPbk + T (6)

where λ1, . . . , λk ≥ 0 and T = µ1Pc1 + · · · + µdPcd ,
µ1, . . . , µd ∈ R, is a translation.

Lemma 4 For each polytope Pc = {x ∈ Rd : Ax ≤
c}, A ∈ Rm×d, 0 6= c ∈ Rd, such that Ax ≤ c is
feasible,

1. if Ax ≤ −c is feasible then Pc is a point

2. if Ax ≤ −c is not feasible then Pc is a non-trivial
polytope or Pc is a point whose description Ax ≤
c contains a non-active inequality (c 6= ηc).

Proof. Since Ax ≤ c is a polytope, feasibility of
Ax ≤ −c implies the existence of a point beyond all
faces of Pc. This cannot happen unless Pc is a point.
Arguing as above, we see that point 2 is true when Pc
is nontrivial. If, however, Pc is a point, the feasibility
of both Ax ≤ ±c fails only if the description Ax ≤ c
contains a hyperplane that does not support Pc. �

Proof. [Proof of Proposition 3] If a polytope Pbi cor-
responds to an extreme ray of U(A)b, then Ax ≤ bi
is feasible whereas Ax ≤ −bi is not. Since, by defi-
nition, the cone U(A)b contains polytopes all whose
inequalities are active, Lemma 4.2 rules out the case
where dim(Pbi) = 0. Thus, Pbi is a non-trivial inde-
composable summand of Pb. If, on the other hand, a
polytope Pci corresponds to an extreme line of U(A)b,
then both Ax ≤ ci and Ax ≤ −ci are feasible. In this
case, Lemma 4.1 implies that Pci is a point. �

If we only want to decide whether Pb is indecom-
posable, Proposition 3 is simplified as follows.

Corollary 5 Let Pb = {x : Ax ≤ b}, A ∈ Zm×d be a
d-polytope withm facets. Then, Pb is indecomposable
if and only if cone U(A)b has a single generating ray.

Example (Cont’d) We consider the intersection I =
U(A)∩iFi of all cones corresponging to faces Fi of the
polytope. We compute the V -representation of U(A)b
and get its rays; I is a 7-dimensional cone, with rays:

bi Ax ≤ bi vertex set:

±(1, 1, 0, 0,−1, 1, 0, 1, 0, 1) 0-dim {(0, 0,±1)}
±(1, 1, 0, 0,−1, 1, 0, 1, 0, 1) 0-dim {(±1, 0, 0)}
±(1, 0, 0, 1, 0, 0,−1,−1, 0, 0) 0-dim {(0,±1, 0)}

(0, 0, 0, 0, 0, 0, 1, 1, 0, 0) 1-dim {(0, 0, 0), (0,−1, 0)}
(0, 0, 0, 0, 0, 0, 0, 0, 1, 1) 1-dim {(0, 0, 0), (−1, 0, 0)}
(1, 1, 0, 0, 0, 1, 0, 1, 0, 1) 1-dim {(0, 0, 0), (0, 0, 1)}
(0, 0, 0, 0, 0, 1, 2, 2, 2, 2) 2-dim {(0, 0, 0), (−2, 0, 0),

(0,−2, 0), (−2,−2, 0), }
(−1,−1, 1)}
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The rays ±b1,±b2,±b3 correspond to points. The
next three rays correspond to line segments and the
last ray corresponds to a square pyramid, which are
exactly the Minkowski summands of the polytope de-
fined by System (3).

In order to find integer indecomposable summands,
the rays of U (A)b may not suffice since they only
convey information about the combinatorial type of a
polytope.

To resolve this issue, we find an appropriate in-
teger polytope corresponding to each Pbi in Equa-
tion (6). More precisely, we find an integer polytope
Pb′i , combinatorially equivalent to Pbi , such that for

all 0 < λ < 1 and all v ∈ Rd the polytope λPb′i + v is
not integer.

The first step is to dilate/shrink Pbi enough, so that
we get the “smallest possible” integer polytope corre-
sponding to bi. This can be achieved in the follow-
ing way: First ensure that one of the vertices of Pbi
is the origin, by translating the polytope if needed.
Now consider the vertices vj = (

aj1
bj1
, . . . ,

ajd
bjd

) ∈ Qd,
1 ≤ j ≤ s, of Pbi , where each

ajk
bjk

is in reduced form.

Then, define:

gcd(v1, . . . , vs) := gcd{ajk : 1 ≤ j ≤ s, 1 ≤ k ≤ d},
lcm(v1, . . . , vs) := lcm{bjk : 1 ≤ j ≤ s, 1 ≤ k ≤ d}.

It is not hard to see that P ′bi := {x : Ax ≤ λ′bi} where

λ′ = λ′(Pbi) := lcm(v1,...,vs)
gcd(v1,...,vs)

is an integer polytope

with the additional property that for any 0 < λ < 1
the polytope λP ′bi is not.

The second and final step is to find a generating
set of integer translations. Rather than repeating the
above procedure for the trivial polytopes Pci in Equa-
tion (6), we show that the columns c̃1, . . . , c̃d ofA form
a set of integer translation generators in U (A)b.

Lemma 6 Let Pb = {x : Ax ≤ b}, A ∈ Zm×d be
a d-polytope with m facets. For each 1 ≤ i ≤ d set
c̃i := Aei where e1, . . . , ed is the standard basis of Rd.
The polytope {x : Ax ≤ c̃i} is the unique point ei.

Proof. Since the rows of A positively span Rd, the
system Ax ≤ 0 has a unique solution. Thus, the same
holds for Ax ≤ Aei, with unique solution ei. �

We therefore use the vectors c̃1, . . . , c̃d ∈ U(A)b as
generators of the integer translations in Rd.

Summarizing, we have the following algorithm:
The above algorithm returns a finite set b1, . . . , bk ∈

Rm which, together with c̃1, . . . , c̃d, produces all
MinkDecomp of the input polytope Pb. Thus, each
way to write b =

∑
i λibi +

∑
j µj c̃j yields a decom-

position of Pb as in Equation (6). If we want to find
integral decompositions of Pb, then the choices for the
above λi, µj should be integers. This allows only a fi-
nite number of decompositions.

Algorithm 1 MinkowskiSummands(A, b)

1: H−i ← {x ∈ R : aix ≤ bi}
2: Hi ← {x ∈ R : aix = bi}
3: R ← rays of ker

(
A>
)
∩ Rm+

4: U (A) ←
{
x ∈ Rm : r>x ≥ 0 for r ∈ R

}
5: U (A)b ← U (A)
6: for k ← 0 . . . dim(P )− 1 do
7: for F face with dim(F ) = k do
8: I ← {i1, . . . , i`} ⊆ [m] such that F ⊆ His

9: AF ←

 ai
−ai
aj

 for i ∈ I and j ∈ [m] \ I

10: R ← rays of ker
(
A>F
)
∩ Rm+`

+

11: U (AF ) ←
{
b̃ ∈ Rm+` : r>b̃ ≥ 0 for r ∈ R

}
12: Substitute using {b̃1, b̃2, . . . , b̃d+`} =

{bi1 ,−bi1 , . . . , bi` ,−bi` , bi`+1 , . . . , bid}
13: Compute H-rep of U(AF ) wrt (b1, . . . , bm)
14: U(A)b ←− U(A)b ∩ U(AF )

15: R ← rays of U(A)b
16: Summands=∅
17: for ri in R do
18: Ensure the origin is a vertex of Pri

19: Compute the vertices (
aj1

bj1
, . . . ,

ajd

bjd
) of Pri

20: λ′ ← lcm(v1,...,vs)
gcd(v1,...,vs)

21: Summands ← λ′ri
22: return Summands
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